Application of internal curing for mixtures containing high volumes of fly ash
نویسندگان
چکیده
This paper focuses on testing performed onmixtures that would be consistent with themortar portion of a concrete bridge deck mixture for many state departments of transportation. In this work a relatively large percentage of cement (40%, 60%, or 80% by volume) is replaced with Class C fly ash. To overcome concerns associated with slow set and early-age strength development that are often expressed with the high volume fly ash mixtures (HVFA), the water-to-cementitious materials ratio (w/cm) by mass has been reduced from a conventional value of 0.42 to 0.30. To overcome potential complications that the low w/cm may cause in terms of self-desiccation, internal curing (IC) with prewetted lightweight aggregate was used to reduce shrinkage and increase hydration. By adopting this approach (lowering the w/c and using IC) IC HVFA mixtures show additional benefits that should permit their broader application. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Mixture Proportioning Options for Improving High Volume Fly Ash Concretes
High volume fly ash (HVFA) concretes are one component of creating a more sustainable infrastructure. By replacing 50 % or more of the Portland cement with fly ash, a significant reduction is achieved in the carbon footprint of the in place concrete. While HVFA mixtures can be proportioned to produce equivalent long term performance as conventional (cement-only) mixtures, performance problems a...
متن کاملInternal Curing of High-Performance Blended Cement Mortars:
In the twenty-first century, most high-performance concretes, and many other ordinary concretes, are now based on blended cements that contain silica fume, slag, and/or fly ash additions. Because the chemical shrinkage accompanying the pozzolanic and hydraulic reactions of these mineral admixtures is generally much greater than that accompanying conventional portland cement hydration, these ble...
متن کاملFuzzy Logic Model for Prediction of Compressive Strength of Lightweight Concrete Made with Scoria Aggregate and Fly Ash
In this study, a fuzzy logic prediction model for 3, 7, 14 and 28 days compressive strength of lightweight concrete made with scoria aggregate and fly ash under different curing conditions (standard and air curing) was devised. In mixtures containing fly ash, 15% of Portland cement by weight was replaced with fly ash. The specimens were cured in standard curing conditions at temperature 20±2 °C...
متن کاملInfluence of Curing on the Strength Development of Calcium-Containing Geopolymer Mortar
This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven ...
متن کاملPacking Models and Proportioning Methodology for Fly Ash-Metakaolin Light Weight Aggregate Concrete
Submitted: May 12, 2013; Accepted: Jun 18, 2013; Published: Jun 30, 2013 Abstract: This paper investigates on production technology and concrete proportioning methods for lightweight aggregate concrete containing fly ash-metakaolin material. The aggregates were cured in different curing regime such as water curing and hot air oven curing at 100°C. An empirical formula was developed to arrive at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012